6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Филаментные лампы с драйвером высокого качества

Филаментные лампы. Из чего состоят и как устроены, и при чем тут Нобелевская премия и люминофор

Обычно, у домовладельцев количество ламп больше, чем у горожанина — в освещении нуждается дом с несколькими комнатами, второй этаж (а у кого и третий), подсобные помещения, постройки, крыльцо.

А из-за того, что напряжение в сельской местности нестабильно, то обычные лампы накаливания не выполняют своих задач — если напряжение занижено, то световой потом этих ламп сильно падает, а если завышено, то только успевай их заменять на новые. Так, из-за того, что в один момент напряжение у нас поднялось до 275-ти вольт, деревянный потолок в комнате над плафоном стал дымиться.

В общем, с появлением новых типов ламп, лампам накаливания теперь не место в деревне. Чем же их заменить? Энергосберегающие отпадают сразу, кроме экономии энергии у нет нет преимущество перед светодиодными. Выбор в их пользу был очевиден, и я заменил все лампы накаливания на светодиодные.

Конечно, эстетика пострадала, ведь светодиодные лампы имеют размер больше, чем накаливания, их не установишь в каждый светильник, да и вид у них неказистый, но то, что они работают в широком диапазоне напряжений, что при его скачках не мигают, мгновенно включаются на морозе, перекрывает их недостатки. Тут я опускаю мерцание и качество светового потока. Это тема отдельной статьи, да и потом индустрия светодиодных ламп быстро развивается, устраняя эти недостатки, но правда пока этого не видно:)

Используя светодиодные лампы в большом количестве и разных их типов, из недостатков я бы хотел отметить такие, как постепенно появляющийся от них запах, его источает пластмассовый корпус от нагрева, так как производители, стремясь к удешевлению и миниатюризации своих изделий совершенно не заботятся об отводе тепла от ламп. Канули в лету светодиодные лампы с радиаторами внутри и в металлическом корпусе:

В принципе, большинство электронных компонентов лампы рассчитаны на бесперебойную работу при высокой температуре — 100-120 градусов, но вот для пластика лампы это испытание и он начинает понемногу темнеть и распадаться с образованием неприятного запаха, отравляя воздух вокруг:

А в некоторых лампах температура была настолько высокая, что вытекала некая жидкость внутрь колбы лампы:

Именно поэтому плафоны для этих ламп в идеале должны быть повернуты вверх, чтобы предотвратить скопление горячего воздуха около корпуса светодиодной лампы. И не рекомендуется применять закрытый тип светильника для мощных светодиодных ламп.

Понять, как снизилось качество производства ламп, достаточно по их весу:

А теперь взвесим современную светодиодную лампу мощностью 12 ватт:

Понятно, в какую сторону идет оптимизация в угоду снижению стоимости ламп.

Но все изменилось, когда я увидел её:

Филаментные лампы — это светодиодные лампы выполненные в форм-факторе лампы накаливания, иногда их производят в цехах, где раньше производили лампы накаливания, используя модернизированное оборудование. Электронные комплектующие завозят из Китая.

А само название филаментная происходит от английского слова — «filament», что в переводе означает нить. Вот так усилиями маркетологов светодиодная лампа превратилась в загадочную филаментную. Колбы у них бывают двух видов — из стекла и, реже, поликарбоната.

Давайте посмотрим как она устроена. Для этого снимем цоколь лампы:

Видим, что в цоколе лампы расположен «драйвер» — блок питания для светодиодов. Чем дороже лампа, тем качественней драйвер, тут действуют все правила, как для обычных светодиодных ламп.

В данном случае видим, что на электролитическом конденсаторе стоит маркировка 105, это обозначает его предельную рабочую температуру в 105 градусов Цельсия, и косвенно говорит о качестве комплектующих. Это самое высокое значение. Мне встречалась маркировка и 95 градусов.

Поскольку мощность лампы невелика — 6 Вт, то блок питания упрощен, отсутствие некоторых элементов не влияет на качество работы лампы. При съемке на видеокамеру она не мерцает.

Теперь снимем (разобьем колбу) и рассмотрим устройство филаментов — диэлектрических полосок с нанесенными на них светодиодами, покрытыми слоем люминофора:

Все филаменты внутри лампы соединены последовательно:

Напряжение питания каждой нити в данном случае порядка 60-70-ти вольт. Каждая нить имеет мощность 1.5 Ватта.

Преимущество филаментных ламп заключается в том, что:

Во-первых, они выполнены из стекла и металла, что экологично — от лампы нет никаких запахов, температура ее корпуса не превышает 50-60 градусов. Да и природа пластиком не засоряется. Во-вторых, угол излучения у филаментной лампы такой же, как и у лампы накаливания — она светит во все стороны. В-третьих, сам корпус лампы вписывается в любой светильник.

То есть филаментная лампа это полноценная замена лампе накаливания и по форме, и по характеристикам. Так как свечение филаментов максимально приближено к свечению нити накаливания.

В филаментной лампе применено оригинальное решение по отводу тепла от светодиодов, как видно внутри неё нет никаких радиаторов, тепло, выделяющееся при работе филаментов, отводится с помощью инертного газа, чаще гелия, к стенкам колбы лампы.

Рассмотрим филамент поближе:

Как я писал выше, филамент это диэлектрическая подложка с нанесенными на неё светодиодами синего свечения. Почему синего? Очень просто, светодиодов белого свечения не существует. Белый свет можно получить лишь с помощью синего светодиода.

Создание синего светодиода было сложнейшей задачей. И за изобретение синего светодиода была вручена Нобелевская премия, настолько непростая была работа. Это заняло почти 10 лет. Только представьте, сколько в сторублевой лампе интеллектуальных затрат!

Но как же нам получить тогда из синего белый свет? Тут нам на помощь приходит люминофор желтого цвета. Люминофор — это вещество преобразующее излучение одной длинны волн в другую. Поскольку люминофор это порошок, то чтобы нанести его на светодиоды его размешивают в веществе подобном прозрачному герметику, которым и покрывают светодиод, вот как это выглядит в обычном светодиоде:

Удаляем люминофор с филамента:

Как видно на фотографии, светодиодов на данной подложке 24 штуки и все они включены последовательно, отсюда и такое высокое напряжение питания филамента.

Необязательно все светодиоды на филаменте должны быть синего свечения, если нужен теплый спектр излучения, то на подложку добавляют небольшую часть красных светодиодов.

И напоследок, какие же минусы у филаментных ламп? Для меня это то, что они полностью не ремонтопригодны.

Как и их предшественники, лампы накаливания, в случае неисправности филаментная лампа просто утилизируется. Есть еще один минус, но это касается недорогих филаментных ламп, это то, что диапазон напряжения их работы не такой большой, как самых дешевых обычных светодиодных ламп. Он лежит в диапазоне 175-250 вольт. Это вызвано тем, что сложно в небольшом объеме цоколя уместить качественный драйвер для светодиодов.

Еще один минус, это то, что все светодиоды в лампе соединены последовательно и с выходом одного выходит из строя вся лампа.

Но тем не менее, я заменил во всем доме лампы светодиодные на филаментные.

Оригинал статьи размещен у меня на сайте.

Что такое филаментные лампы Томича (led filament)?

Светодиодные лампы очень популярны и потребляют мало электроэнергии, но для некоторых светильников их внешний вид не подходит. Особенно касается хрустальных люстр и бра. В таких случаях лучше приобрести светодиодные лампы filament.

Филаментные лампы что это такое?

Это вид светодиодных ламп, которые внешне максимально приближены к лампам накаливания. Они имеют полностью прозрачную стеклянную колбу и цоколь, а внутри расположены светодиоды вместо нити накала.

Филамент – основной функциональный элемент такой лампы, представляет собой светодиодную полоску особой конструкции. Внешним видом филаменты напоминают нить, потому некоторые так их и называют — лампочки на светодиодных нитях.

Из чего состоит светодиодная нить?

Рассмотрим более подробную структуру такого типа LED – Filament. Дословно на русском языке это слово звучит, как нить накала. Состоит из трёх слоев:

  1. Стеклянное или сапфировое основание;
  2. 28 светодиодов синего свечения. Иногда, для получения более тёплых оттенков, часть синих светодиодов заменяются красными, в пропорции 1 к 3;
  3. слой люминофора, который обеспечивает свечение белого цвета необходимой цветовой температуры.

светодиодные нити (филаменты) крупным планом

В среднем мощность одного филамента – порядка 1Вт, а напряжение – от 60 вольт. Такое напряжение питания не позволяет производить низковольтные лампы со светодиодными нитями.

Филаментные лампы выдают довольно сильный световой поток, сравните его с другими типами из таблицы. Филаменты выпускаются в весьма узком диапазоне мощностей – от 4 до 8 Вт.

Корпус филаментных ламп совершенно отличается от светодиодных, в привычном их виде. Филаментные в точности повторяют конструкцию лампочек накаливания, что позволяет отечественным производителям делать их на тех же производственных линиях, что и накаливания. О том, какие последствия влечет за собой такое исполнение, мы расскажем ниже.

Конструкция филаментной лампы Томича

Лампа с нитевыми светодиодами состоит из:

  • Цоколя, обычно E27 или E14;
  • стеклянная колба;
  • внутри колбы расположена стеклянная ножка и проводники для питания филаментов;
  • филаментные светодиоды;
  • драйвер, который расположен в цоколе.

На фото подробно рассмотрена конструкция производителя Rusled. Они продают свою продукцию под название «лампочка Томича».

Это изделия отечественного производства, они нацелены на замещение импортной продукции. Даже в своем названии проводят аналогию с лампой «Ильича». Лампа Томича — это своего рода новый шаг в развитии бытового освещения.

Кроме «Томича» на территории нашей страны производство есть в Саранске – на заводе «Лисма». Как заявляют рекламные ролики: «Единственная в РФ производственная линия лампового стекла и цоколей».

При этом в России нет мощных предприятий способных наладить выпуск подобных светодиодов, поэтому LED-комплектующие импортируют из Китая.

В обычных светодиодных лампах драйвер размещен на плате, для которой в корпусе достаточно много места. Это позволяет использовать схемы высокого качества и уровня сложности, с целью снижения коэффициента пульсаций.

В случае с размерами драйвера лампы filament led есть ограничения – его плата очень маленькая и должна вмещаться в пределах полости цоколя. Взгляните как это выглядит в жизни.

В таком маленьком пространстве конструкторам удалось разместить все необходимые детали. Качественные лампы не пульсируют или их пульсации крайне малы и находятся в пределах допустимого.

Естественно, бюджетные лампы зачастую оборудованы обычной схемой питания на гасящем конденсаторе, как и в случае с пластиковыми классическими светодиодными лампами. Это дает слишком пульсирующий свет, что крайне вредно для вашего здоровья.

Схема драйвера

Драйвер выполняется обычно по подобной схеме. Вместо предохранителя F1 может использоваться низкоомный резистор (до 20Ом) средней мощности (до 1Вт).

DB1 – это выпрямительный диодный мост, рассчитанный на обратное напряжение до 400-1000В. E2 – конденсатор сглаживающий пульсации диодной моста, E1 – дополнительный конденсатор для питания микросхемы. SM7315P и подобные – это микросхема драйвер, сердце всей цепи.

Его устройство включает в себя ШИМ-контроллер, цепи обратной связи по току (различные мультиплексоры, компараторы и другие элементы. Они сравнивают значение номинального тока и реального, после чего дают сигнал ШИМ-контроллеру на изменение коэффициента заполнения управляющих импульсов). ШИМ управляет силовым ключом (n-MOS скорее всего). Силовой ключ расположен в корпусе микросхемы, поэтому на плате его вы не найдёте.

R1 – датчик тока, позволяет изменить силу тока в цепи светодиодов. Чем больше его номинал – тем меньше ток.

L1 – накопительная индуктивность, благодаря которой происходит преобразование напряжения.

D1 – диод, необходимый для работы преобразователя.

E3 – конденсатор, фильтрующий выходные пульсации.

R2 – резистор, обеспечивающий минимальную нагрузку для преобразователя.

В целом, контур образованный из L1, D1 и транзисторного ключа, встроенного в микросхему, представляет собой типовую схему импульсного понижающего преобразователя. Упрощенный вариант такой схемы изображен на следующем рисунке.

Особенности конструкции

Как я часто пишу – светодиоды греются. При этом нагрев происходит настолько сильный, что некоторые чипы не могут проработать и минуты без дополнительного теплоотвода. У мелких светодиодов в SMD-корпусах тепло отводится через их контактные площадки.

Мощность одного филамента около 1 ватта. Взгляните на SMD-светодиоды – на каждый ватт их мощности, нужно 25-30кв.см. площади радиатора. Отсюда возникает интересный вопрос, связанный с охлаждением филаментов.

Мощность филаментной лампы можно определить по её внешнему виду, а именно по количеству нитей. 1 нить — 1Вт.

Как охлаждаются филаментные светодиоды?

Во-первых, филамент – это не цельный мощный светодиод, а лишь матрица. Тип матрицы в этом форм-факторе на англоязычных ресурсах называется «COG» или «Chip-on-Glass». На русском языке это что-то вроде «Матрица на стеклянной основе».

Во-вторых, раз уж это матрица, значит на ней есть множество мелких светодиодов. По отдельности они выделяют очень мало тепла, так как они маломощные. Приблизительный расчет:

1 Вт / 28 светодиодов = 0,036 Вт/светодиод

Для отвода тепла нужен носитель. Производители заполняют колбу филаментных ламп хорошо проводящим тепло газом. Одни источники заявляют, что этот газ — гелий, в рекламных видео о лампочках томича говорится о специальной рецептуре газов. Однозначной информации по этому поводу нет.

Благодаря такой конструкции нагрев филаментной лампочки слабый – порядка 50-60 градусов. Вы смело можете использовать их в светильниках с бумажными, тканевыми и пластиковыми абажурами. Нагрев самой нити филамента доходит до температур свыше 100 градусов. Современные светодиоды способны работать и при температурах КРИСТАЛЛА в 120 градусов, а корпус имеет значительно меньший нагрев.

Распространение филаментов

После появления филаментных ламп – спрос на них начал расти и постепенно дошел до уровня обычных светодиодных изделий. Причина этому проста – их дизайн и возможность добиться большого угла свечения, без использования дополнительных оптических систем.

У стандартных светодиодных ламп, в пластиковом корпусе, угол излучения до 170 градусов. У филаментных же доходит до 300 градусов.

Такого угла свечения получилось достичь благодаря стеклянной прозрачной колбе и расположенных по кругу филаментов. Некоторые модели имеют нестандартные формы и способ расположения филаментов (под углом, крест на крест, S-образно), для обеспечения более равномерного освещения.

Сравнительная таблица филаментнов от разных производителей

Если решили покупать — обратите внимание на производителя. Заявленные параметры у всех отличаются и зачастую завышен процентов на 10.

Филаментная LED лампа
Устройство, схема, пример ремонта

Светодиодная филаментная лампа – это искусственный источник света, в котором световая энергия вырабатывается нитевидным элементом, называемым филаментом (filament), состоящим из множества включенных последовательно светодиодных кристаллов.

Филаментная лампа была разработана японской компанией «Ushio» в 2008 году, но из-за малой мощности для освещения была непригодна. И только в 2013 году китайским компаниям удалось добиться величины излучения светового потока филаментной лампы, сравнимого с лампой накаливания мощностью 60 Вт. Внешний вид филаментной лампочки показан на фотографии.

Филаменты

Источником излучения светового потока в филаментной лампе являются филаменты, откуда и произошло название лампы.

На фотографии показано шесть филаментов, извлеченных из перегоревшей лампы. Филаменты могут иметь любую форму, даже спирали. Это позволяет дизайнерам создавать эксклюзивные лампочки.

Устройство светодиодного филамента

Филаменты изготавливают по технологии Chip-On-Glass, сокращенно COG, что переводится как чип на доске.

Основанием филамента служит стеклянный или сапфировый стержень круглой формы с вплавленными в него по торцам электродами. Диаметр стандартного стержня составляет 2 мм, длина – 30 мм.

Вдоль стержня закреплено последовательно соединенных 28 светодиодных миниатюрных кристаллов синего и красного цветов излучения. Сверху светодиоды покрыты слоем лака, пропускающим только белый свет.

Мощность филамента составляет около 1 Вт, напряжение, необходимо для свечения составляет около 60 В. Рабочий ток, соответственно, около 16 мА.

Филаменты в лампочках размещают в герметичную стеклянную колбу, но они успешно могут работать и на открытом воздухе, что позволяет из них делать оригинальные самодельные светильники.

Устройство филаментной лампочки

Если посмотреть на филаментную лампочку издалека, то можно и не отличить ее от лампы накаливания. Такая же стеклянная колба и внутреннее устройство. Только спирали толще и расположены вертикально.

Но это только внешнее сходство, так как работает филаментная лампа по принципу светодиодной лампочки.

Для подачи питающего напряжения в лампе имеется металлический цоколь с резьбой Эдисона. В настоящее время лампы оснащают цоколями только типоразмеров Е14 и Е27. В цоколе размещен драйвер, который обеспечивает преобразование переменного напряжения сети в постоянное напряжение, стабилизированное по току.

С драйвера питающее напряжение подается через два проводника, вплавленных в герметичную стеклянную колбу, на выводы размещенных в ней филаментов. Филаменты между собой и токовводами соединяются с помощью точечной сварки. Для эффективного отведения тепловой энергии от филаментов колба заполнена гелиевой газовой смесью, которая обладает высокой теплопроводностью.

Анализ причины перегорания филаментной лампы

Чтобы не отставать от технического прогресса при появлении на рынке филаментных ламп приобрел двенадцать таких лампочек с цоколем Е14 мощностью 6 Вт для двух люстр.

Лампы красиво смотрелись в люстре и хорошо освещали помещение, но через год эксплуатации одна из них ярко вспыхнула и перестала светить. Решил выяснить, в чем причина отказа.

Попытка отделить цоколь от колбы лампы не увенчалась успехом. Клей-компаунд скрепил цоколь с колбой намертво. Пришлось применить разрушающий метод разборки с помощью тисков.

Для извлечения драйвера из цоколя пришлось, вращая его сжимать по немного тоже в тисках. Компаунд и остатки стекла колбы при этом крошились.

В результате удалось извлечь из лампы филаменты и драйвер без их повреждения. На фотографии показано как выглядит филаментная лампа без колбы и цоколя.

При осмотре драйвера сразу бросилось в глаза, что рядом с токоограничивающим конденсатором резистор был покрыт слоем копоти, что свидетельствовало о сгорании одной из деталей. Проверка резистора показала его исправность. Следовательно, вышел из строя конденсатор.

На противоположной стороне печатной платы драйвера был распаян только мостовой выпрямитель и нанесена маркировка для подключения. Прозвонка диодов мультиметром показала, что все диоды исправны.

Электрическая схема филаментной лампы

Для дальнейшего анализа причины отказа с печатной платы драйвера срисовал электрическую принципиальную схему филаментной лампы. Как видно из схемы, она практически не отличается от стандартной схемы светодиодной лампы, собранной на обыкновенных светодиодах с токоограничивающим конденсатором.

Ток стабилизируется с помощью конденсатора С1, выпрямляется диодным мостом VD1-VD4 и далее поступает на филаменты HL1-HL6, соединенные последовательно двумя параллельными группами по три. Резисторы служат для разряда конденсаторов после выключения лампы. С2 сглаживает пульсации.

Достоинством этой схемы драйвера является простота, позволяющая поместить его даже в цоколь Е14, высокий КПД и практически отсутствие выделения тепла. Недостатком является большой коэффициент пульсаций светового потока, что исключает использование ламп с таким драйвером для освещения рабочих мест с напряженным трудом.

Если необходима филаментная лампа с малым коэффициентом пульсаций, то нужно приобретать с драйвером на микросхеме. На фото классическая схема такого драйвера, но он больше по размерам, поэтому устанавливается только в филаментные лампы с цоколь Е27.

Проверка филаментов лампы

Для проверки филаментов необходимо на их выводы подать напряжение постоянного тока не менее 60 В. Поэтому мультиметром, который выдает в режиме измерения сопротивления напряжение не более 9 В прозвонить филамент невозможно.

Поэтому для проверки филаментов был использован драйвер, извлеченный из лампы. Конденсатор С1 был в обрыве, поэтому был выпаян и вместо него запаян исправный навесной такой же емкости.

При подаче напряжения на драйвер, засветился только один из шести филаментов, и то участками, что указывало на возможную неисправность всех филаментов лампы.

Для проверки филаментов они были разъединены и проверены по отдельности. Подключались к родному драйверу, последовательно с которым по цепи подачи питающего напряжения был запаян дополнительных конденсатор такой же емкости.

Как и ожидалось, все филаменты оказались неисправными. Один из них засветился, как и ранее, участками, что не позволяло его дальнейшее использование.

Причина перегорания филаментной лампы

Филаментная лампа перегорела из-за электрического пробоя токоограничивающего конденсатора С1. В результате все напряжение питающей сети (220 В) было приложено к выводам светодиодных филаментов и через них потек ток, превышающий допустимый.

Светодиоды от перегрева перегорели, как и сам конденсатор. От него и покрылась копотью печатная плата.

Ремонт филаментной лампы

Схемы драйверов у филаментных ламп такие же, как и обыкновенных светодиодных и ремонт их отличается только способом разборки. Приведу пример из личной практики ремонта филаментной лампы.

Через некоторое время перегорела еще одна лампа в люстре из этой же партии. С учетом полученного опыта решил применить неразрушающий способ ее разборки, так как внешний осмотр не выявил перегорания филаментов.

Для этого была использована мини дрель с установленным в нее наждачным диском, как у болгарки. Такая мини дрель в комплекте имеет большой набор инструментов, позволяющий выполнять практически любые ювелирные работы, начиная от сверления и заканчивая гравировкой на металле и стекле.

Цоколь филаментной лампы был зажат за резьбовую часть в тисках и прорезан абразивным диском по всей длине его окружности, как показано на фотографии.

Далее при одновременном разогреве центрального контакта цоколя паяльником резьбовая его часть была отсоединена. В результате получен доступ к печатной плате драйвера. Драйвер был обвернут изоляционной прозрачной пленкой.

Изоляция была удалена и диоды выпрямительного моста проверены с помощью мультиметра. Они оказались в обрыве. Мост был заменен диодным мостом, взятым из драйвера разбитой описанной выше лампы.

Для исключения перегорания филаментов последовательно с установленным в драйвере конденсатором был впаян навесной емкостью 0,5 мкФ и на схему подано напряжение.

Филаменты засветились, правда с меньшей яркостью, так как при последовательном соединении конденсаторов суммарная их емкость всегда становится меньше, чем емкость конденсатора в цепочке с меньшей емкостью. Слабое свечение филаментов свидетельствовало о исправности конденсатора на плате. При подаче питающего напряжения на выводы лампы она засветила на полную яркость.

Для восстановления целостности цоколя отпаянный вывод драйвера был заведен в предварительно освобожденный от припоя центральный контакт и половинки цоколя соединены в четырех местах с помощью пайки. Для надежности были использованы отрезки выводов от советского транзистора.

Осталось только вкрутить отремонтированную своими руками филаментную лампу в патрон люстры для проверки. Как видите все лампочки светят одинаково ярко.

Достоинства и недостатки филаментных ламп

Достоинства филаментных ламп:

  • Большой срок службы;
  • Большой угол рассеивания светового потока, как у ламп накаливания;
  • Красивый внешний вид, что позволяет использовать их в любых видах светильников;
  • Полная взаимозаменяемость с лампами накаливания, что позволяет устанавливать филаментные лампы в любые старые люстры и светильники;
  • Возможность дистанционного изменения яркости свечения (диммирование);
  • Безопасная температура нагрева стеклянной колбы, что исключает возможность получения ожога при случайном прикосновении;
  • Утилизируются как бытовые отходы.

Недостатки филаментных ламп:

  • Цена больше, чем у обыкновенных светодиодных;
  • Выпускаются только для сети напряжением 220 вольт;
  • Доступно только два вида цоколя – E27 и E14;
  • Мощность не превышает 6 Вт (эквивалент лампочки накаливания 60 Вт);
  • В случае перегорания филаментов не подлежат ремонту;
  • Требуют бережного отношения из-за стеклянной колбы.

Заключение

Как видите, недостатки филаментных ламп, кроме цены, на практике мало ограничивают возможность их применения в бытовых условиях.

Хотя максимальная мощность лампы в настоящее время небольшая, но четырех или пятирожковая люстра с лампочками мощностью 6 ватт вполне обеспечит достаточное освещение помещения площадью до 20 м 2 . А если понадобиться осветить комнату большей площади, то можно повесить две люстры.

Филаментная лампа являются образцом последних достижений светотехники и в ближайшее время вытеснит все остальные источники искусственного освещения в помещениях.

7 секретов светодиодной филаментной лампочки — преимущества и недостатки.

Внешне все филаментные лампы напоминают обычные лампочки накаливания. Первоначально их даже так и называли – светодиодные лампы накаливания.

Однако ввиду противоречий, которые были запрятаны в таком определении, впоследствии в обиход прочно вошло иностранное слово филаментные. Хотя некоторые предпочитают называть их “ретро лампы”.

В буквальном переводе filament – это нить.

Изначально их выпускали только для декоративных целей, никто и не думал такими “светлячками” делать полноценную замену нормальному освещению. Объяснялось это их маленьким световым потоком.

Однако все изменилось в 2013 году. В этот период сразу несколько китайских компаний вывели на рынок филаментные лампы со световым потоком, эквивалентным обычным лампам накаливания в 60Вт.

При этом по своим некоторым характеристикам они оказались намного лучше не только лампочек Ильича, но и обошли многие модели на привычных светодиодах SMD 2835, SMD 5730 и т.д.

Что же такое этот самый филамент, который запрятан в стеклянной колбочке? Филамент – это стержень из искусственного сапфира или керамики, но чаще всего стекла.

На этом стержне размещаются миниатюрные светодиоды, которые соединяются между собой тончайшей золотой проволокой, образуя таким образом последовательную цепочку.

Это что-то вроде светодиодной ленты в миниатюре.

Светодиоды находятся так близко между собой, что в рабочем состоянии вся нить светится равномерно. Никаких отдельных точек не видно.

На концах стержня припаяны контакты для подачи напряжения.

Сверху вся эта конструкция покрыта специальным составом – люминофором.

Он преобразует синий свет кристаллов светодиодов в белый и отвечает за цветовую температуру источника света (теплый, холодный).

  • лимонный оттенок нитей – 4500К (нейтральный белый свет)
  • насыщенный желтый цвет – 3000К (теплый белый)
  • насыщенный оранжевый – 2350К (еще более теплый)

Таким образом, просто взглянув на лампочку можно тут же узнать ее примерную мощность.

  • 4 нити – 4 Вт
  • 8 нитей – 8 Вт

Если их больше, то это означает что внутри либо неэффективный драйвер, либо светодиоды работают в жестком режиме и быстро сгорят.

Даже многие известные бренды на лампочках малой мощности прописывают срок службы в 15 000 часов и более, а для мощных, всего 10 000 часов.

Перегорают они следующим образом. Сначала начинают помаргивать и работать как стробоскоп отдельные нити. Светят то ярко, то тускло.

Затем тусклая фаза становится все дольше, пока лампа окончательно не погаснет и перестанет запускаться.

Все филаментные нити крепятся на стеклянной ножке, со штенгелем в виде трубки.

Помимо крепежных функций, через это устройство откачивают воздух из колбы. Через эту же ножку проходят проводники для подачи напряжения.

Так как лампочка все же светодиодная, никак нельзя обойтись без драйвера.

Его запрятали в цоколе E27.

Драйвер необходим для снижения силы тока до рабочего уровня светодиодов.

Из чего обычно состоит качественный драйвер?

  • предохранитель
  • выпрямитель диодного моста
  • сглаживающие конденсаторы
  • микросхема импульсного регулятора тока с элементами обвязки (дроссель, диод, сопротивление и высокочастотный конденсатор)

Как работает вся эта схема? После подачи напряжения ток поступает на цоколь светильника (его нижний контакт).

Проходя через предохранитель (F1), он выпрямляется диодным мостом (DB1). Из переменного тока мы получаем постоянный.

Далее вступают в дело конденсаторы (С1-С2) и дроссель (L1). Они сглаживают ток.

Дойдя до микросхемы (U1), он опять проходит преобразование и превращается в высокочастотные импульсы, которые сглаживаются конденсатором. Пробежав всю эту цепочку, ток наконец проходит через светодиоды филаментов и возвращается обратно в сеть.

Стабилизация тока, протекающего через филаменты, происходит через микросхему регулятора с помощью измерительного сопротивления (RS1).

Кроме обычной прозрачной колбы иногда можно встретить модели со специальным напылением. Оно создает более мягкое и теплое освещение.

Так как светодиоды в процессе работы сильно греются, необходимо оперативно отводить от них тепло. В старых светодиодных лампочках это делается через массивные радиаторы, которые существенно увеличивают габариты изделия.

А в филаментных внутри колбы закачан инертный газ на основе гелия. Это тот, при вдыхании которого, вы начинаете на некоторое время разговаривать как маленький ребенок.

Он то и способствует быстрой передаче тепла от кристаллов к стеклянным стенкам и далее в окружающее пространство.

Без газа и стекла сами стержни разогреваются весьма заметно.

А вот оперативный отвод тепла и большая площадь стеклянных стенок, по сравнению с площадью самих светодиодов, позволяют филаментному источнику света не нагреваться более 50-60 градусов.

В то же время попробуйте дотронуться до включенной лампочки накаливания. Некоторые умельцы из них даже делают инфракрасные обогреватели.

И весьма успешно.

К сожалению, мощность всех филаментных ламп ограничена объемом колбы. Конечно, теоретически вы туда можете запихать 20-30 стержней, но светиться они у вас будут всего несколько секунд.

Малое пространство и небольшой объем газа в нем, просто не успеют оперативно отвести образовавшееся тепло и светодиоды моментально перегреются. Понадобятся колбы совершенно других форм и размеров.

Поэтому филаментные лампочки привычных габаритов А60 стараются не делать большой мощности. Экономия здесь не причем.

Все дело в технической составляющей и ограничениях по перегреву.

Реальные показатели будут раза в два меньше указанного на упаковке.

11 ваттные модели по люменам и уровню освещения не заменят вам полноценные 80-100 Вт, которые дают простые лампы накаливания.

Они будут соответствовать максимум 60 Вт. То же самое относится и к индексу цветопередачи CRI.

В лучшем случае он будет превышать показатель 80, но никак не CRI>90.

Вот таблица наиболее распространенных тип ламп, их максимальная мощность и световой поток, которые они способны выдать.

Данные получены известным специалистом в области световых технологий Алексеем Надёжиным, в результате независимых тестов и лабораторных замеров.

Каждый раз, когда вы видите в магазине лампочку, на упаковке которой будут написаны показатели превышающие эти измерения, знайте – вас дурят. Это чистый маркетинг и гонка производителей.

Напишешь на своем изделии 7Вт, а рядом будет стоять конкурент с надписью 9Вт, причем за те же деньги, то 9 из 10 купят именно его продукцию, а не твою. 99% потребителей попросту не имеют соответствующих приборов для измерений и проверки.

Им главное, чтобы изделие служило подольше.

Обращайте на это внимание.

Помимо малого нагрева филаменты обладают еще одним преимуществом – высокая светоотдача. Он доходит до 120 Лм/Вт.

При этом угол рассеивания лампочек достигает 360 градусов. В то время как в обычных светодиодных он не превышает 120-270 градусов.

Когда филаментная лампочка висит вниз колбой, у нее по центру появляется пятно, которое раза в два темнее, чем весь освещаемый периметр. Диаметр пятна достигает 50см на удалении в 1,5 метра от самой лампочки.

Форма пятна – это четырехлистник, который образуется от нитей светодиодов сходящихся наверху вместе.

Чем он шире, тем больше это пятно.

Кроме прямых нитей, выпускаются модели с дугообразной и спиральной формой.

Они дороже и их чаще всего используют в качестве декоративной подсветки под Новый Год.

Филаментные лампы идеально подходят для хрустальных светильников и люстр. В них как раз-таки важен нитевидный источник света, который при отражении будет играть на гранях хрусталя.

Матовые экономки в таких люстрах смотрятся нелепо. Свет получается “мертвый”, а висюльки не сияют.

Помимо преимуществ стоит упомянуть и о недостатках, а их не так уж и мало.

Во-первых, это цена. Она высокая из-за дорогих миниатюрных драйверов, которые по причине ограниченного пространства нужно как-то умудриться запихнуть в цоколь.

Из-за маленького драйвера возникают проблемы с фильтром. А отсюда повышенные пульсации света.

Вот к примеру сравните, старую добрую светодиодную лампу на технологии SMD и современную филаментную.

У старых один драйвер был такого же размера, как колба у филаментной.

Обязательно проверяйте пульсации при покупке. Иначе повесите такие лампы у себя в зале и спальне как основной источник света, а затем будете мучиться с глазами.

Если подходить к этому вопросу по всей строгости закона, то лампы с плохими показателями коэффициента пульсации, вообще не имеют права даже находиться на прилавках магазинов.

Существует постановление правительства России №1356 “Требования к осветительным приборам и осветительным лампам”. Оно запрещает продажу источников света с пульсацией более 10% и CRI

Заметьте, что у одних и тех же по размеру лампочек внутри может быть два разных драйвера. Один полноценный с коэффициентом пульсации 1% и менее, другой – на основе дешевых комплектующих.

Хороший драйвер при поднесении к нему радио будет фонить. А вот дешевый, не создаст никаких серьезных импульсных помех в эфире.

В некоторых моделях “свеча” с миниатюрным цоколем E14, драйвер помещают в специальную проставку между цоколем и колбой, так как воткнуть что-то качественное в бочонок диаметром 14мм вообще не реально.

Второй недостаток – стеклянная колба, которую легко можно разбить при небрежном отношении или транспортировке.

Третий – малая мощность. А еще не забываем:

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector