7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фотореле своими руками схема 220в

Схемы фотореле для управления освещением

Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, вот некоторые из них.

Наверное, самая простая схема показана на рисунке 1. Количество деталей в ней, невелико, меньше уже не получится, а эффективность, читай чувствительность, достаточно высокая.

Это достигнуто тем, что транзисторы VT1 и VT2 включены по схеме составного транзистора, называемой также схемой Дарлингтона. При таком включении коэффициент усиления равен произведению коэффициентов усиления составляющих транзисторов. Кроме того, такая схема обеспечивает высокий входной импеданс, что позволяет подключать высокоомные источники сигнала, как показанный на схеме фоторезистор PR1.

Рисунок 1. Схема простого фотореле

Работа схемы достаточно проста. Сопротивление фоторезистора PR1 с увеличением освещенности уменьшается до нескольких КОм (темновое сопротивление несколько МОм), что приведет к открыванию транзистора VT1. Его коллекторный ток откроет транзистор VT2, который включит реле K1, которое своим контактом включит нагрузку.

Диод VD1 защищает схему от ЭДС самоиндукции, возникающей в момент выключения реле K1. Таким образом, очень маломощный сигнал фоторезистора преобразуется в сигнал достаточный для включения обмотки реле.

Чувствительность этой простой схемы достаточно высока, иногда просто избыточна. Чтобы ее уменьшить, и регулировать в необходимых пределах можно добавить с схему переменный резистор R1, показанный на схеме пунктиром.

Напряжение питания указано в пределах 5…15В, — зависит от рабочего напряжения реле. Для напряжения 6В подойдут реле РЭС9, РЭС47, а для напряжения 12В РЭС49, РЭС15. При указанных на схеме транзисторах ток обмотки реле не должен превышать 50мА.

Если вместо транзистора VT2 поставить, например, КТ815, то выходной ток может быть больше, что позволит применить более мощные реле. А вообще, чем выше напряжение питания, тем выше и чувствительность фотореле.

Схема фотореле с фотодиодом

Схема этого фотореле показана на рисунке 2.

Рисунок 2. Схема фотореле с фотодиодом

Как и предыдущая, она также содержит минимальное количество деталей, благодаря применению операционного усилителя (ОУ). В данной схеме ОУ включен по схеме компаратора (сравнивающего устройства). Нетрудно видеть, что фотодиод LED1 включен в фотодиодном режиме, — питание подано так, что фотодиод смещен в обратном направлении.

Поэтому, при снижении уровня освещенности сопротивление светодиода Led1 возрастает, что приводит к уменьшению падения напряжения на резисторе R1, а следовательно и на инвертирующем входе компаратора OP1.

Напряжение на неинвертирующем входе ОУ устанавливается при помощи переменного резистора R2, и является пороговым — задает порог срабатывания. Как только напряжение на инвертирующем входе станет меньше, чем пороговое, на выходе компаратора появится высокий уровень напряжения, который откроет транзистор T1, который включит реле K1.

Реле и транзистор в этой схеме можно подобрать, руководствуясь рекомендациями к схеме, показанной на рисунке 6. В качестве компаратора можно использовать ОУ типа К140УД6, К140УД7 или подобные. Источник питания для схемы подойдет любой, можно даже бестрансформаторный, без гальванической развязки от сети. В этом случае при наладке следует быть внимательным, соблюдать правила техники безопасности. Идеальным вариантом следует считать использование для настройки схемы разделительного трансформатора или, как его иногда называют трансформатора безопасности.

Настройка устройства сводится к установке порогового напряжения таким образом, чтобы включение происходило уже при наступлении сумерек. Чтобы не дожидаться этого природного момента, можно в затемненной комнате засвечивать фотодиод лампой накаливания, включенной через тиристорный регулятор мощности. Эта же методика пригодна для настройки и других схем фотореле.

Возможно, что при срабатывании фотореле релюшка будет дребезжать. Избавиться от этого явления можно присоединив параллельно катушке электролитический конденсатор на несколько сотен микрофарад.

Фотореле на микросхеме

Специализированная микросхема КР1182ПМ1 представляет собой фазовый регулятор мощности, то же самое, что обычный тиристорный. Весьма важным и ценным свойством такого регулятора мощности является то, что он включается в схему как двухполюсник, не требуя для себя дополнительного провода питания: просто включил параллельно выключателю и все уже работает! На рисунке 4 показано, как на этой микросхеме можно построить несложное фотореле.

Рис. 3. Микросхема КР1182ПМ1

Рисунок 4 . Схема фотореле на микросхеме КР1182ПМ1

Управляющие выводы микросхемы 3 и 6. Если между ними подключить просто обычный однополюсный выключатель, то при его замыкании нагрузка будет отключаться! Если его разомкнуть, то нагрузка подключится. Кстати, без дополнительных внешних тиристоров или симистора, и даже без радиатора, микросхема выдерживает нагрузку до 150Вт. Это в случае, если при включении нагрузки нет бросков тока, как у ламп накаливания. Лампу накаливания в таком варианте можно включать мощностью не более 75Вт.

Просто выключатель к этим выводам подключать как бы ни к чему, если только в комплексе с другими деталями. Если не обращать внимания на фототранзистор и электролитический конденсатор, мысленно оставить только переменный резистор R1, то получается просто фазовый регулятор мощности: при перемещении его движка вверх по схеме выводы 3 и 6 замыкаются накоротко, тем самым отключая нагрузку, как упомянутым выше контактом. При перемещении движка вниз по схеме мощность в нагрузке изменяется от 0…100%. Тут все понятно и просто.

Если к этим выводам подключить электролитический конденсатор (считаем, что фототранзистора в схеме пока нет), то получится просто плавное включение нагрузки. Каким образом?

Сопротивление разряженного конденсатора невелико, поэтому поначалу управляющие выводы микросхемы 3 и 6 практически замкнуты накоротко и нагрузка отключена. По мере заряда сопротивление конденсатора возрастает (достаточно вспомнить проверку конденсаторов омметром), напряжение на нем тоже растет, мощность в нагрузке плавно увеличивается. Получается устройство плавного включения нагрузки. Причем мощность в нагрузку будет подана на столько, насколько введен движок переменного резистора R1. При отключении устройства от сети конденсатор разряжается через резистор R1, подготавливая устройство к следующему включению. Если конденсатор разрядиться не успеет, то плавного включения не будет.

Вот теперь и добрались до самого главного, до фотореле. Если теперь к управляющим выводам 3 и 6 подключить фототранзистор, то получится фотореле. Работает оно следующим образом. Днем при высокой освещенности фототранзистор открыт, поэтому сопротивление его участка коллектор – эмиттер невелико, выводы 3 и 6 замкнуты между собой, нагрузка отключена.

При плавном уменьшении освещенности в вечерние часы фототранзистор плавненько будет открываться, постепенно увеличивая мощность в нагрузке, то есть в лампе. Никаких пороговых элементов в этой схеме нет, поэтому лампа будет зажигаться и гаснуть постепенно.

Чтобы фотореле не сработало в тот момент, когда включится своя же лампа, фототранзистор желательно защитить от такой подсветки. Проще всего это сделать с помощью пластиковой трубки.

Фотореле своими руками схема 220в

Всем привет. Как ожидалось, опять пришла весна. А вместе с ней и некоторые вопросы и думки о предстоящей посевной на приусадебном огороде. Да простят меня автомобили, но сегодня поговорю об этом. Так что, суровые водители автотранспорта, интересующиеся только им, а также жаждущие поржать, могут отдохнуть и не читать дальше.

Меня лично озаботила тема, как организовать дополнительную подсветку рассады в не очень светлом помещении. Дело в том, что у меня помидорно-перечный питомник организован в мастерской при гараже (дабы не мусорить в доме). Так вот, там одно окно на запад, да еще притемненное находящейся над ним террасой второго этажа. Короче, ацки мало света, однако!

Как известно, оптимальная освещенность рассады должна быть где-то около 8000 люкс. А от окна у меня в светлый день от силы 1000 люкс. То есть почти в десять раз меньше, чем желают вершки и корешки. Вот и решил одолеть эту злобную тему. А заодно рассказать и поделиться некоторыми своими технологическими приемами при изготовлении электронных устройств детской сложности, так как, несмотря на простоту в целом, сам часто сталкивался с проблемками, которые приходилось так или иначе решать.

Собственно подсветка у меня организована конструкцией из четырех светодиодных прожекторов, подвешенных к потолку над рассадой. Но их нужно утром включить, а вечером выключить (такой цикл жизни у растений, в отличие от людей, которые спят и бодрствуют иногда очень затейно). Кто-то скажет, а в чем проблема? Ну включай и выключай, или уже и это лень?! Для таких злых людей поясню, что мне приходится постоянно уезжать дня на два-три в неделю. А это уже проблема. На фазенде никого нет, кроме видеокамер, у которых, как известно другие важные задачи.

Итак, поехали! Надо сделать фотореле, которое будет включать светильники на рассвете и выключать вечером в сумерки. Схему взял проверенную ранее на термореле включения и выключения вентиляторов охлаждения в блоке питания, о котором писал ранее.

Только слегка доработал ее. Естественно вместо терморезистора применил фоторезистор ФР-765. А номинал резистора R1 увеличил до 820 ком. Опробовал работу схемы на макетной плате, запитав ее от лабораторного источника.

В качестве источника питания схемы взял имеющийся AC-DC преобразователь на 12в. Он идеально компоновался вместе с платой в небольшой корпус.Индикаторный светодиод не применял, так как индикация наглядно происходит путем включения четырех прожекторов по 100 ватт (как уж не понять, что, — Ура! Сработало!).
Сделал разводку платы в Sprint-Layuot с учетом компоновки в корпусе.

А дальше нужно делать плату методом ЛУТ (лазерно утюжная технология). Распечатал рисунок платы на лазерном принтере ( у меня HP) на желтой китайской термобумаге (она мне наиболее нравится из всего опробованного, так как стабильно дает результаты при переносе изображения на фольгированный стеклотекстолит и легко отделяется от него после переноса). В настройках принтера нужно задать максимальный расход тонера. Заготовка платы ошкуривается нулевкой и обезжиривается ацетоном. Заготовку платы делаю несколько больше, чем нужный размер, чтобы зафиксировать бумагу с рисунком на ней при помощи полосок малярного скотча шириной 20 мм ( это скотч шириной 20 мм, не полоски), которые наклеиваются, как показано на фото и загибаются за края заготовки. Малярный скотч надежно удерживает бумагу на заготовке при прогреве ее утюгом, не плавится и легко отделяется потом не оставляя следов. К этому я пришел после многих разных экспериментов, как к наиболее оптимальному способу фиксации. Вот примерно так.

Далее собственно ЛУТ. Утюг ставится на максимальную температуру. Пока он греется, кладу заготовку платы на доску бумагой с рисунком вверх. Накрываю ее листом, сложенным вдвое, обычной офисной бумаги. сверху накрываю тоже сложенным вдвое тонким вафельным полотенцем, какие сейчас продаются как ветошь за копейки.Дальше начинаю проглаживать этот бутерброд утюгом с небольшим нажимом в течение полутора минут. Затем заготовку оставляю остывать естественным образом. Когда она остынет до комнатной температуры, осторожно отделяю бумагу от медного слоя заготовки.

Здесь важно правильно выдержать время прогрева, чтобы не пересох тонер. Я несколько передержал, поэтому огрехи поправляются кислотостойким маркером.
Далее — собственно травля. Ее описывать не буду, процедура известная. После травления смываем тонер с платы тампоном, смоченным ацетоном. Вот, что получилось. Не бог весть, но приемлемо.

Далее обрезаем заготовку в размер. Для того, чтобы это легко можно было сделать, при разводке платы в Sprint-Layout я выбираю опцию с контуром платы. По этим линиям обрезаю плату в размер. Чем бы вы думали? Ножницами…, по металлу. Они прекрасно режут текстолит и нет пыли, как от ножовки.

Дальше нужно плату облудить. Для этого я использую сплав Розе. Этот сплав имеет температуру плавления около 99 градусов. В небольшой металлической емкости с антипригарным покрытием (расплавленный сплав к нему не пристает) с водой на портативной газовой плитке расплавляю кусочек сплава Розе ( в воду необходимо добавить немного лимонной кислоты, примерно чайную ложку без горки на стакан воды), кладу туда плату рисунком на расплавленный сплав (похожий на ртуть, такой же подвижный), немного прижимаю передвигая туда-сюда плату, затем переворачиваю плату рисунком вверх. Силиконовой лопаточкой (коих масса в хоз. отделах) растираю расплавленный сплав по поверхности рисунка, залуживая его тонким слоем.Вот, что получилось.

Далее сверлим отверстия. Я пользуюсь маленьким и легким китайским сверлильным станочком с плавной регулировкой оборотов, к которому сделал подсветку зоны сверления.

Пробовал ручные микросверлилки, но это не то. Здесь строго вертикально подается сверло (я использую твердосплавные германские сверла, которые хоть и стоят 150 руб . штука, но того стоят) и вероятность сломать его крайне мала. Разве что в неадекватном состоянии, но в этом случае лучше заняться чем-то другим, например смотреть широко на мир говяжьим взглядом. Ну а теперь собираем схему на плате. Вот, что получилось.

Если монтаж выполнен правильно, то схема запускается сразу. Наладка заключается в регулировке подстроечным резистором световых порогов срабатывания реле. Я настроил примерно на 30 люкс с учетом некоторого гистерезиса, который задается резистором обратной связи R3.

Кстати о гистерезисе. Я выбрал эту схему еще и потому, что при срабатывании реле на граничных значениях (что в термореле, что в фотореле) абсолютно отсутствует дребезг контактов реле. Срабатывания четкие. Хотя, мы знаем, как медленно меняется освещенность при утренних и вечерних сумерках. Но даже в этом случае нет пограничных эффектов. Вот готовое изделие с розеткой питания нагрузки.

А это оно в работе.

Ну вот, теперь еще одной проблемой стало меньше. И еще. Это фотореле можно использовать и в режиме включения света с наступлением темноты и выключения его с ростом освещенности. То есть, как автоматическое включение освещения чего-либо в ночное время. Для этого задействуется лишь другой контакт реле. На рисунке печатной платы это видно. Всем добра!

Как сделать фотореле своими руками?

Один из важных компонентов автоматики в наружном освещении, наравне с детекторами движения (ДД) и таймерами, это фотореле (или световое реле, сумеречный выключатель, фотодатчик). Предназначением этого устройства является включение наружного освещения и не только, при приходе темноты, без вмешательства человека.

За счет ускорения темпов технического прогресса и промышленных объемов производства сегодня цена светового реле не «кусается». В этой публикации мы рассмотрим устройство фотореле и особенности его подключения, кроме того, вы узнаете, как изготовить световое реле собственными руками.

Сфера использования

В большинстве своем световое реле предназначается для включения и отключения уличного освещения в автоматическом режиме. Имеются и иные возможности использования, в частности, посредством светового реле можно отрегулировать запуск водяного насоса фонтана с утра, а остановку под вечер. Сфера использования светоуправляемых приборов чрезвычайно обширна, они позволят решать самые разные вопросы, не только сопряженные с освещением.

Логично использование сумеречного выключателя для управления осветительным оборудованием в общественных местах, парках, торговых и промплощадках, на автопарковках, дорогах.

Устройство не позабудет включить освещение в вечернее время и выключить поутру без вмешательства человека. Система на 100% самостоятельна.

В частном домовладении также применяют автоматическое освещение, но здесь существенную роль играет цена на электрическую энергию. Отнюдь не всегда необходимо, чтобы осветительные приборы во дворе светили целую ночь, тратя недешевое электричество.

Как правило, требуется, чтобы освещение включалось с приходом темноты на протяжении определенного времени, а затем выключалось. Или же освещение включается исключительно в темное время суток на непродолжительный отрезок времени при присутствии людей в освещаемой области, например, около отхожего места, автогаража. В подобных ситуациях актуальны устройства, оборудованные вспомогательными приборами в виде ДД либо таймера.

Разновидности устройств

С учетом предназначения и исполняемых обязанностей прибор регулировки света подразделяется на несколько ключевых типов.

С интегрированным фотоэлементом (датчиком освещенности)

Нередко подобные устройства консолидированы в общий узел с управляемым осветительным прибором и предназначаются для монтажа на улице. Наделены высокой степенью влаго-, пылезащиты, не меньше IP44.

Функционируют исключительно с тем прибором, в который интегрированы.

С выносным детектором освещенности

Электронный узел монтируется в шкаф, щиток либо устанавливается в ином огражденном от влияния неблагоприятных условий погоды месте, в связи с этим требования к уровню защиты оболочки IP понижены, хватает IP20. Датчик освещенности монтируется снаружи и соединяется посредством электропроводов с электронным узлом. Требования к IP датчику освещенности аналогичны уличному исполнению, не меньше IP44.

Разнесенная структура дает возможность формировать щиты автоматизации и управления уличным освещением, где сумеречный выключатель – это один из элементов комбинированной, многоуровневой схемы.

При подсоединении электроконтактов светового реле к электромагнитному аппарату либо мощному внешнему реле открывается возможность осуществлять управление нагрузкой большой мощности, в частности, в случае управления приборами освещения автопарковки, супермаркета или автомобильной дороги.

На разные уровни напряжения

Электропитание сумеречного выключателя может быть рассчитано на разные напряжения тока, 12, 24, 220, 380 Вольт. Имеются модификации с довольно обширным спектром питающих напряжений от 12 до 264 В. Образцы на невысокое напряжение 12 и 24 В могут функционировать в схемах с использованием других источников электрической энергии, солнечных батарей, ветроэлектрических установок с аккумуляторным сопровождением.

Видов устройств управления светом достаточно много. В числе их имеются как обыкновенные, с опцией включения/отключения, так и профессиональные. Профессиональные отличаются расширенным набором функций (встраиваемые таймеры, календарь событий, возможность управлять дежурным и основным освещением).

С целью упрощения настройки и контроля за функционированием системы приборы оборудованы экраном. Наличие энергетически независимой памяти позволяет запоминать установленные настройки.

Структура сумеречного выключателя

Ключевым компонентом светового реле является фотодетектор, в электросхемах могут использоваться транзисторы, диоды, фотосопротивление (фоторезистор), фотоэлементы. При перемене величины светового потока, падающего на фотоэлектрический элемент, меняются его характеристики, такие как электросопротивление резистора, перемена состояния электронно-дырочного перехода в полупроводниковых триодах и диодах, а также перемена напряжения на контактах фотоэлемента.

Затем сигнал обнаруживается усилителем и устройством сравнения (компаратором – в его роли можно задействовать операционный усилитель типа К140УД6, К140УД7 либо аналогичные) и осуществляется переключение двухтактного эмиттерного повторителя, переключая или отключая нагрузку.

В роли выходных элементов управления применяют реле или симметричный триодный тиристор. При подсоединении светового реле нужно ознакомиться с практическим руководством, особенно предельной мощностью выходного узла, уделить внимание виду лампочек освещения (диодные лампы, газоразрядные, накаливания).

Необходимо знать, что фотореле с тиристорным выходом не может функционировать с энергосберегающими лампочками, не предназначенными для этого, и монтируются в регулятор мощности лучистой энергии лампы. Этот аспект нужно принимать во внимание, чтобы не остаться со ставшими неработоспособными световым реле и лампочкой. Теперь разберем пару схем для сборки светового реле в домашних условиях своими силами.

Самостоятельная сборка

Исходя из того, какой вид светового реле вы избрали, будет определяться и схема его изготовления. Сейчас мы рассмотрим простую схему, по которой можно будет без каких-либо затруднений смонтировать прибор своими руками. В собственной основе фотореле имеет микросхему КР1182ПМ1. Если на улице светло, фоторезистор (фотодиод) VT1 засвечен. Протекающий через его p-n переход электроток закрывает внутри фазового регулятора симисторы. Вследствие этого симистор VS1 окажется закрыт, а лампочка EL1 не станет светиться.

Как только подходит вечер, происходит понижение освещенности фотодиода VT1. Вследствие этого уменьшается и электроток, проходящий через p-n переход. Это влечет за собой то, что в микросхеме открываются транзисторы. Они, как правило, содействуют открыванию симистора VS1 и включению лампочки.

Лишь потому, что схема изготовления подобного датчика не имеет пороговых компонентов, включение лампочки и ее отключение осуществляется размеренно. Помимо этого, большая чувствительность сумеречного выключателя дает возможность включаться осветительному прибору на всю силу исключительно при приходе глубоких сумерек.

Дабы уменьшить помехи в деятельности самодельного устройства, в схему необходимо добавить катушку индуктивности L1 и конденсатор C4.

В роли конденсатора нужно брать К73-16 либо К73-17 с напряжением не меньше 400 В. Равным образом можно применять конденсаторы К50-35. На теплоотвод с поверхностной платформой в 300 см2 нужно инсталлировать симистор VS1. Катушку индуктивности делаем из 2 склеенных ферритовых фильтров К38×24×7 (можете взять модель М2000НМ). Обмотку накручиваем в один слой, который должен состоять из 70 витков проволоки ПЭВ-2 с сечением в 0,82 миллиметра.

Грамотно собранное световое реле не имеет нужды в отладке. При возникновении потребности увеличить чувствительность в схему следует добавить еще один фотодиод. При его отсутствии можно сделать из старого транзистора МП 39 либо МП 42 – срезать у него оболочку напротив коллектора. При отладке непременно соблюдайте меры предосторожности, поскольку все элементы прибора будут пребывать под напряжением.

Делаем фотореле по схеме своими руками

Емкостное фотореле для уличного освещения — устройство, позволяющее включать или выключать лампы, используемые на дорогах, у подъездов и в парках. Их использование экономит электроэнергию и минимизирует неудобства для водителей, жильцов дома и простых прохожих.

Работа основана на фоторезисторе или фотодиоде — полупроводниковых элементах, которые меняют свои параметры в зависимости от интенсивности освещения среды. Днем при достаточном количестве света датчик освещенности размыкает цепь, и лампа выключается, а ночью происходит обратная последовательность действий: емкостное реле для управления освещением снижает сопротивление, и свет включается.

Установка фотореле

Установить фотореле своими руками несложно, важно лишь исключить прямое влияние регулируемого источника освещения и защитить устройство от неблагоприятного воздействия извне: влаги, прямых солнечных лучей, перепадов температуры.

Для устройств промышленного производства существует ряд стандартов, которым такие решения должны соответствовать: ГОСТ (отечественные) и IP (международные). Добиться же того, чтобы самодельное фотореле было защищено от факторов внешней среды сложнее, хотя и теоретически возможно. Но для желающих установить подобное устройство у себя во дворе, около своего подъезда или гаража, лучше для начала рассмотреть предлагаемые на рынке решения — без владения нужными знаниями и опытом фотодатчик своими руками довести до рабочего состояния будет крайне сложно.

ФР-601 (602)

Если речь заходит об использовании стандартных однофазных фотореле для освещения, то самой популярной моделью являются устройства ФР-601 и ФР-602 производства компании ІЕК.

Они достаточно надежные, и даже у непосвященных в электронику пользователей не возникает вопросов, как подключить автоматический регулятор подсветки. Эти две модификации имеют несущественные различия: они обе работают с током одних и тех же напряжения и частоты, имеют аналогичную потребляемую мощность (0,5 Вт) и абсолютно одинаковые комплекты поставки.

Различия касаются лишь максимального сечения подключаемых проводников: для 601 модели она составляет 1,5 кв. мм., а для 602 — 2,5. Следовательно, отличается у них и номинальный ток нагрузки: 10 и 20 А, соответственно. Фотоэлемент у обеих моделей встроенный, его регулировка возможна в пределах от 0 до 50 лк с шагом в 5 лк.

Изготовление в домашних условиях

Принципиальная схема емкостного фотореле ФР-602 (как и его собрата) легко повторяется даже при незначительных познаниях в электронике. Особую актуальность создания самоделки приобретает при потребности в большом количестве устройств (например, для организации автоматического включения и отключения освещения в зависимости от времени суток).

Для изготовления понадобятся такие детали, в скобках будут указаны обозначение на приведенной схеме и мощность:

  • 2 биполярных транзистора BC857A (Q1 и Q2);
  • 5 выпрямительных диодов 1N4007;
  • выпрямительный диод 1N4148;
  • стабилитрон 1N4749 ;
  • резисторы (R2, R4–R9: 1,5 МОм, 1 МОм, 560 кОм, 200 кОм, 100 кОм, 75 кОм и 33 кОм; все мощностью 0,125 Вт);
  • резистор (R3, 220 Ом, 2 Вт);
  • фотоэлемент (PH, до 100 кОм);
  • подстроечный резистор (WL, 2,2 мОм);
  • конденсатор (С2, 0,7 мкФ 400 В);
  • электролитические конденсаторы (С4–С5, 100 мкФ 50 В и 47 мкФ 25 В, соответственно);
  • реле SHA-24VDC-S-A (Rel1).

Учитывая набор и суммарную стоимость деталей, а также наличие схемы, 602 модель — довольно простое в исполнении решение.

К слову, многие детали из списка можно заменить на отечественные. По отзывам уже собиравших биполярный транзистор Q2 можно заменить встречающимся повсеместно КТ3107Б, а стабилитрон 1N4749 — тремя последовательно подключенными Д814А или двумя Д814Д. Схема подключения также не отличается особой сложностью.

Недостатки модели

Рассмотрим, в чем минусы подобной схемы. Как ни странно, с технической стороны схема не уступает заводской при должной сноровке радиолюбителя. Разница будет ощущаться в реальной эксплуатации: заводское изделие имеет стандарт защиты IP44, что подразумевает пыле- и влагозащиту.

Также заводские ФР-601 и ФР-602 имеют больший диапазон рабочих температур, а самодельная схема в мороз в декабре может перестать работать из-за одного-единственного некачественного соединения.

Аналоги

Среди аналогов данному устройству значатся ФР-75А — фотореле, схема которого более сложна для изготовления в домашних условиях, а также менее стабильна и долговечна при практическом использовании.

Среди его преимуществ — больший диапазон рабочей яркости, составляющий от 1 до 200 лк, что вчетверо превосходит конкурента. Еще один большой плюс устройства ФР-75 — возможность работы в цепях постоянного тока напряжением 12 В.

Также фотодатчик является выносным, что позволяет установить сам регулятор внутри помещения и не беспокоиться о факторах окружающей среды. В целом, в своем классе модель не имеет равных и является лучшим фотореле — 12 вольт постоянного тока часто используются в качестве питания для подобных устройств. Схема подключения устройства изображена на рисунке.

Оборудование высокой мощности

Среди конкурентов также можно рассмотреть фотореле ФР-7Е, но не в его пользу говорят отсутствие защиты от влаги (IP40) и довольно высокая потребляемая мощность.

Также к недостаткам можно отнести открытые контактные зажимы и отсутствие защиты подстроечного резистора на лицевой панели. Положительный момент — работать ФР-7 может в сетях переменного тока напряжением 220 вольт с напряжением до 5 ампер, что почти на порядок больше, нежели у рассмотренных выше конкурентов. Диапазон регулировки в 10 лк также устанавливается лишь специалистом — отрегулировать его самостоятельно не получится.

По габаритам ФР-7 также превосходит рассмотренные в статье фотореле (см. чертеж).

Заключение

Учитывая опыт эксплуатации фотореле в бытовых и промышленных условиях, наиболее стабильной и легко воспроизводимой в домашних условиях является модель ФР-602 или ее менее мощная вариация ФР-601 от компании AIK. Они отлично показывают себя в различных режимах работы, имеют хороший запас долговечности и, что самое главное, обладают минимальной себестоимостью. Кроме того, их сборка облегчается возможностью заменить многие зарубежные детали на дешевые отечественные аналоги.

Видео

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector