7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчёт конденсатора для электродвигателя 380 на 220

Выполнение расчёта конденсатора для электродвигателя 380 на 220

Чтобы подключить трехфазный двигатель на 380 В к однофазной сети на 220 В, следует выполнить расчёт конденсатора для электродвигателя 380 на 220 вольт, если быть более точным, пары конденсаторов — рабочего и пускового. Асинхронный электромотор подключается двумя способами: по схемам «треугольник» и «звезда».

Электронный компонент накопления электроэнергии

Конденсатором называется электронный элемент, который предназначен для аккумулирования электроэнергии. Характер работы не предусматривает активных действий компонента. С учетом рабочего режима выделяют конденсаторы переменной и постоянной ёмкости.

В зависимости от вида напряжения различают полярные, где следует строго придерживаться определенной полярности, и неполярные (применяются в цепях переменного и постоянного тока). При выборе требуемой емкости следует помнить, что в цепи с параллельным соединением итоговая ёмкость складывается.

Чтобы электромотор запустился и продолжил работать, применяют пусковые (Сп) и рабочие (Ср) конденсаторы. Предназначение пускового конденсатора — пуск электродвигателя.

Когда двигатель достигает рабочей частоты и мощности, пусковой конденсатор выключают. Основная функция рабочего конденсатора — создание достаточного сдвига электромагнитного поля.

Емкость рабочего конденсатора для подсоединения электромотора по схеме подключения обмоток «звезда» рассчитывают по формуле:

C р =2800 * I н /U с (мкф), где:

  • I н — номинальный ток электромотора, измеряемый в Амперах (соответствует паспортным данным электродвигателя);
  • U с — напряжение сети. Единица измерения — Вольт.

Пусковой конденсатор подсоединяется параллельно рабочему и включается только на этапе пуска электромотора. В момент набора оборотов двигателем нужно выключить пусковой конденсатор.

Емкость пускового конденсатора должна превышать емкость рабочего в 2,5−3 раза. Рассчитывается по формуле: C п = (2,5…3) * C р; (мкф).

Установление выводов обмоток

Первым делом необходимо разделить выводы обмоток попарно. У каждой пары должны быть концы, соответствующие обмотке. Для этого потребуется тестер или индикатор напряжения. При использовании тестера устанавливают флажок переключателя на измерение сопротивления (обозначается греческой буквой Ω «омега»). Если используется индикатор напряжения, перед началом работы нужно дотронуться к токоведущим частям на несколько секунд, чтобы зарядить и протестировать прибор.

После этого берется один из выводов обмотки, который будет условно принят началом первой обмотки, и маркируется «U1». Далее необходимо коснуться одним измерительным стержнем тестера или измерителя напряжения вывода «U1», а другим — любого из оставшихся выводов.

Если после этого значения тестера или индикатора остались неизменными, этот конец оставляют, а вторым измерительным стержнем касаются другого вывода остальных четырех проводов, перебирая до того момента, пока показатели измерительных приборов не изменятся. Отыскав таким способом второй вывод обмотки, его принимают за конец первой обмотки и маркируют «U2». Аналогичным способом поступают с другими четырьмя проводами.

Способы подключения электродвигателей

В быту нередко возникает необходимость подключить электромотор 380 на 220 вольт. Несмотря на то что коэффициент полезного действия существенно снижается (более чем 50%), такое преобразование может быть оправданным. Фактически после модернизации двигатель начинает выполнять работу двухфазного.

Отечественные производители электромоторов нередко собирают схему «звезда» по умолчанию, тогда как «треугольник» нужно будет ещё выполнить, подсоединив три фазы и собрав звезду. Сильной стороной схемы подключения двигателя 380 на 220 вольта «треугольник» трёхфазовой электроцепи считается максимальная мощность, вырабатываемая двигателем.

Для соединения обмоток двигателя «треугольником» нужно:

  • подсоединить начало второй обмотки с концом первой;
  • начало третьей обмотки с концом второй;
  • начало первой обмотки с концом третьей обмотки.

Если двигатель подключён по схеме «треугольник», то он способен выдавать стопроцентную паспортную мощность, но во время запуска сила тока настолько велика, что возникает риск нарушения изоляции проводов. По этой причине в мощных электродвигателях используют смешанную схему подсоединения «звезда-треугольник». Двигатель запускается на малых пусковых токах, а при вхождении его в рабочий режим выполняется переход на схему «треугольник».

Пуск по схеме подключения трёхфазного электродвигателя на 220 «звезда» выполняется плавно из-за невозможности добиться максимально возможной работоспособности электромотора.

Схема «треугольник» подойдет электродвигателям с частотой вращения не более 1,5 тыс. оборотов в минуту. В этом типе соединения применяют конденсаторы. Смысл подключения эл. двигателя 380 на 220 через рабочий конденсатор — это появление третьей фазы.

Калькулятор конденсатора для электродвигателя 380 на 220

Чтобы подключить асинхронный электродвигатель трехфазного типа к однофазной сети на напряжение 220 В, необходимо создать условия для сдвига фаз на обмотках статора двигателя. Сдвиг фаз сформирует имитацию кругового вращающегося магнитного поля, заставляющего вращаться вал ротора двигателя. Конденсатор даёт току «запас» в π/2=90° относительно напряжения, и это создаёт дополнительный момент вращения ротора.

При подключении двигателя к сети используют два подключенных параллельно конденсатора — пусковой и рабочий. Данный калькулятор позволяет рассчитать ёмкость этих конденсаторов, ёмкость пускового конденсатора берется из расчёта 2,5 емкости рабочего конденсатора.

Для получения необходимых значений ёмкости, заполните поля формы ниже. Тип соединения обмоток двигателя, мощность двигателя, КПД и коэффициент мощности обозначены на шильдике электродвигателя. Способ соединения обмоток зависит от напряжения сети, к которой выполняется подключение: 220 В — «треугольник», когда концы обмоток соединены между собой, к их началам подводится питающее напряжение; 380 В — «звезда», при котором концы одной обмотки соединены с началом другой.

Результаты расчетов

Информация носит справочно-информационный характер

Для чего необходим расчет емкости конденсатора

Запустить асинхронный трехфазный электродвигатель, рассчитанный на напряжение 380 и даже 220 Вольт, от бытовой однофазной сети с напряжением 220 В напрямую не получится, так как при таком подключении обмоток статора невозможно сгенерировать вращающееся магнитное поле. Добиться необходимых условий для возникновения вращения магнитного потока можно включением в питающую сеть конденсаторов, которые и вызовут сдвиг фазы на 90° и трансформируют однофазный ток в некое подобие трехфазного. Чтобы двигатель работал с наименьшей потерей номинальной мощности и не вышел из строя, нужно правильно подобрать емкость пусковых и рабочих конденсаторов или конденсаторных батарей. С этой целью нами был разработан калькулятор емкости конденсаторов.

Как работает калькулятор емкости конденсаторов онлайн

Для расчета необходимых емкостей достаточно выбрать схему подключения обмоток статора и ввести в специальные окна технические характеристики подключаемого электродвигателя:

  • мощность, Вт
  • КПД, %
  • коэффициент мощности (cos φ )

После внесения всех необходимых данных, которые указаны на шильдике двигателя, требуется нажать на кнопку «Рассчитать»

Программа выполнит расчет пускового конденсатора и вычислит необходимую емкость рабочего конденсатора. Данные отразятся в соответствующих окнах.

Теперь Вам не требуется выполнять вычисления с помощью формул, наш калькулятор рассчитает емкость конденсаторов онлайн.

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Как подобрать и подключить конденсатор для трехфазного двигателя

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Калькулятор расчета емкости рабочего и пускового конденсатора

Калькулятор расчета емкости рабочего и пускового конденсатора

На чтение: 3 минуты Нет времени?

Подключая асинхронный двигатель в сеть с одной фазой (220 в), появляется необходимость обеспечения сдвига фаз для имитации трехфазной сети. В противном случае электромотор просто не сможет функционировать из-за отсутствия вращения магнитных полей. В этом случае возможно применение конденсаторов, имеющих возможность создать нужный перекос, тем самым переводя синусоидальные колебания однофазного тока в некое подобие трехфазного. Проблемой становится правильный подбор емкости конденсаторов. Для этого необходимо произвести расчеты с максимальной точностью.

Представленный ниже онлайн-калькулятор расчета емкости поможет выполнить все действия довольно просто и быстро, не допустив ошибок в вычислениях.

Асинхронный электродвигатель – без дополнительного оборудования от 220 в его не запустить

Высчитывая необходимые показатели самостоятельно следует воспользоваться таблицей.

  • Cр=2800*I/U; I=P/(√3*U*η*cosϕ)
  • Cр=(2800/√3)*P/(U²*η*cosϕ)

Расшифровать обозначения можно следующим образом:

  • – емкости рабочих элементов (мкФ);
  • Cп – емкости пусковых элементов;
  • I – величины токов (А);
  • U – величины напряжений (В);
  • η – Коэффициент полезного действия электромотора в процентах, разделенных на 100;
  • cosϕ – коэффициент мощности.

На этой табличке есть все необходимые данные для онлайн калькулятора

После ввода всех необходимых данных в соответствующие поля нужно нажать кнопку «рассчитать…». Полученные показатели используются для подбора емкости. Единственное неудобство – редко случается найти именно элемент с рассчитанными параметрами. В этом случае берется ближайшая емкость, стоящая ниже по показателю. Если же взять более мощный элемент, возможен перегрев обмоток электродвигателя вследствие возрастания рабочего тока, что неизбежно приведет к повреждению изоляции и опасности межвиткового замыкания. В редких случаях совпадения показателей, естественно, лучше выбрать именно такой.

Номинальное напряжение конденсатора должно быть минимум в полтора раза выше сетевого. Причина этому – резкое возрастание этого показателя в пусковой момент. При подключении к однофазной сети номинал должен составлять 360 в. Если подключается фазное напряжение по двум проводам – 400-450 в. Но это минимальный предел. На самом деле профессионалы советуют брать еще выше – никаких проблем это не создаст.

Схема подключения асинхронного двигателя на 220 В

Ниже представлена таблица номиналов рабочего и пускового конденсатора. Для примеров – серия CBB60 (полипропиленовый пленочный, основное назначение которого – схемы подключения асинхронного двигателя) и серия CBB65, помещенная в алюминиевые корпуса.

Для пуска применяются неполярные конденсаторы на основе электролита (CD60). Как рабочие они неприменимы. Их проблема в том, что длительная нагрузка существенно снижает их срок службы. Хотя в качестве пусковых допускается и CBB60 (CBB65), но они более габаритны при тех же емкостях. Ниже представлена таблица рекомендованных для подобной эксплуатации конденсаторов, способных работать с электродвигателями.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector